
rl Documentation
Release 3.1

Stefan H. Holek

Oct 31, 2022

CONTENTS

1 Overview 3
1.1 Package Contents . 3
1.2 Readline Completion . 3
1.3 Readline History . 4
1.4 Upstream Documentation . 4

2 Completion Support 5
2.1 Completer Interface . 5
2.2 Completion Interface . 7
2.3 Functions . 8

3 History Support 9
3.1 History Interface . 9

4 Readline Bindings 11
4.1 Readline Interface . 11
4.2 Functions . 12

5 Examples 19
5.1 Completion Entry Function . 19
5.2 Generator Factory . 20
5.3 Multiple Completions . 21
5.4 Filename Completion . 22
5.5 Display Matches Hook . 24

6 Indices and Tables 25

Python Module Index 27

Index 29

i

ii

rl Documentation, Release 3.1

Alternative Python bindings for GNU Readline.

CONTENTS 1

rl Documentation, Release 3.1

2 CONTENTS

CHAPTER

ONE

OVERVIEW

Alternative Python bindings for GNU Readline.

1.1 Package Contents

rl exports the following components:

rl.completer
Interface to the readline completer. Used to configure the completion aspects of readline.

rl.completion
Interface to the active readline completion. Used to interact with readline when a completion is in progress.

rl.history
Interface to the readline history. Used to read and write history files and to manipulate history entries.

rl.readline
The readline bindings module. Contains everything known from the standard library plus extensions specific to
the rl package. The completer, completion, and history interfaces make use of this module, and you should
rarely need to interact with it directly.

rl.generator()
A decorator turning any callable into a completion entry function that can be handed to readline.

rl.print_exc()
A decorator printing exceptions to stderr. Useful when writing Python completions and hooks, as exceptions
occurring there are usually swallowed by the in-between C code.

1.2 Readline Completion

Completion is the process initiated when the user presses the TAB key. It has three phases: Word breaking, match
generation, and match insertion/display.

For each phase, readline provides configuration settings and hooks that allow applications to control the way the library
behaves. See the completer and completion objects for detailed descriptions of available properties.

3

rl Documentation, Release 3.1

1.2.1 Call Graph

A calling sequence for filename completion may look like this:

• complete_internal()

– find_completion_word()

∗ word_break_hook

∗ char_is_quoted_function

– gen_completion_matches()

∗ completer

· complete_filename()

· directory_rewrite_hook or

· directory_completion_hook

· filename_dequoting_function

· filename_rewrite_hook

∗ ignore_some_completions_function

– insert_match()

∗ filename_quoting_function

∗ filename_stat_hook

– display_matches()

∗ display_matches_hook

· display_match_list()

· directory_completion_hook or

· filename_stat_hook

1.3 Readline History

History allows readline to save and later recall lines the user has entered. The history object provides a list-like
interface to the history buffer as well as functions to persist the history between sessions.

1.4 Upstream Documentation

The GNU Readline Library and the GNU History Library.

4 Chapter 1. Overview

https://tiswww.case.edu/php/chet/readline/readline.html
https://tiswww.case.edu/php/chet/readline/history.html

CHAPTER

TWO

COMPLETION SUPPORT

Readline completion support.

2.1 Completer Interface

class rl.Completer

Interface to the readline completer. Used to configure the completion aspects of readline.

This class is not intended for instantiation beyond the one completer object in this module. Typically, applica-
tions will import the completer object and use its properties and methods to configure readline:

from rl import completer

completer.quote_characters = '"\''
completer.query_items = 100
completer.parse_and_bind('TAB: complete')

Settings made through the completer object are global and permanent. If you want them restored you have to
take care of it yourself.

Completer.quote_characters

Characters that may be used in pairs to quote substrings of the line.

Completer.word_break_characters

Characters that define word boundaries (a.k.a. delimiters).

Completer.special_prefixes

Characters that are word break characters but should be left in the word passed to the completion entry function.

Completer.filename_quote_characters

Characters that must be quoted when they occur in filenames.

Completer.inhibit_completion

If True, completion is disabled and the completion character is inserted as any other character. Defaults to False.

Completer.query_items

Threshold above which the user is prompted if they really want to see all matches. Defaults to 100. A negative
value means never prompt.

Completer.completer

The completion entry function. The function is called as function(text, state) for state in 0, 1, 2, . . .
until it returns None. It should return the next possible completion for text. See the generator() factory for
a simple way to support this protocol.

5

rl Documentation, Release 3.1

Completer.startup_hook

The startup hook function. The function is called with no arguments just before readline prints the first prompt.

Completer.pre_input_hook

The pre-input hook function. The function is called with no arguments after the first prompt has been printed
and just before readline starts reading input characters.

Completer.word_break_hook

The word break hook function. The function is called as function(begidx, endidx) once per completion
and should return a string of word break characters for the current completion or None to indicate no change.
The passed-in begidx and endidx are what readline would use if the hook did not exist.

Completer.char_is_quoted_function

The char-is-quoted function. The function is called as function(text, index) and should return True if the
character at index is quoted, False otherwise.

Completer.filename_quoting_function

The filename quoting function. The function is called as function(text, single_match, quote_char)
and should return a quoted version of text or None to indicate no change. The single_match argument is
True if the completion has generated only one match.

Completer.filename_dequoting_function

The filename dequoting function. The function is called as function(text, quote_char) and should return
a dequoted version of text or None to indicate no change.

Completer.directory_completion_hook

The directory completion hook function. This function is allowed to modify the directory portion of filenames
readline completes. The function is called as function(dirname) and should return a new directory name or
None to indicate no change. At the least, the function must perform all necessary dequoting.

Completer.ignore_some_completions_function

The filename filter function. The function is called as function(substitution, matches) after all filenames
have been generated and should return a filtered subset of matches or None to indicate no change.

Completer.display_matches_hook

The display matches hook function. The function is called as function(substitution, matches,
longest_match_length) once each time matches need to be displayed. It typically calls
display_match_list() to do the actual work. Note that longest_match_length is not a character
count but the “printed length” of the longest string in matches.

Completer.read_init_file(filename=None)
Parse a readline initialization file. The default filename is the last filename used.

Completer.parse_and_bind(line)
Parse one line of a readline initialization file.

2.1.1 Additional hooks for when the filesystem representation differs from the rep-
resentation in the terminal

Completer.directory_rewrite_hook

The directory rewrite hook function. This hook is used to prepare the directory name passed to opendir()
during filename completion. The function is called as function(dirname) and should return a new directory
name or None to indicate no change. At the least, the function must perform all necessary dequoting. New in
readline 6.2.

Under Python 3 this hook returns filesystem encoding to readline.

6 Chapter 2. Completion Support

rl Documentation, Release 3.1

Completer.filename_rewrite_hook

The filename rewrite hook function. This hook is called for every filename before it is compared against the
completion word. The function is called as function(filename) and should return a new filename or None to
indicate no change. New in readline 6.1.

Under Python 3 this hook returns preferred encoding to readline.

Completer.filename_stat_hook

The filename stat hook function. This hook is used to prepare the filename passed to stat() during match
display. The function is called as function(filename) and should return a new filename or None to indicate
no change. New in readline 6.3.

Under Python 3 this hook returns filesystem encoding to readline.

Note: If directory_rewrite_hook and/or filename_stat_hook are set, the directory_completion_hook
must be None, and vice versa.

2.2 Completion Interface

class rl.Completion

Interface to the active readline completion. Used to interact with readline when a completion is in progress.

This class is not intended for instantiation beyond the one completion object in this module. Typically, ap-
plications will import the completion object and use its properties and methods when implementing custom
completions:

from rl import completion

def complete(text):
completion.append_character = '@'
return completion.complete_username(text)

Settings made through the completion object are only valid for the duration of the current completion. They
are reset to their defaults when a new completion starts.

Completion.line_buffer

The line buffer readline uses. This property may be assigned to to change the contents of the line.

Completion.completion_type

The type of completion readline performs.

Completion.begidx

The start index of the word in the line.

Completion.endidx

The end index of the word in the line.

Completion.found_quote

True if the word contains or is delimited by any quote character, including backslashes.

Completion.quote_character

The quote character found (not including backslashes).

2.2. Completion Interface 7

rl Documentation, Release 3.1

Completion.suppress_quote

Do not append a matching quote character when completing a quoted string. Defaults to False.

Completion.append_character

The character appended when the completion returns a single match. Defaults to the space character.

Completion.suppress_append

Suppress the append character for this completion. Defaults to False.

Completion.filename_completion_desired

Treat matches as filenames. Directory names will have a slash appended, for example. Defaults to False. Set to
True by complete_filename().

Completion.filename_quoting_desired

If matches are filenames, quote them. Defaults to True. Has no effect if filename_completion_desired is
False.

Completion.complete_filename(text)
Built-in filename completion. May be called from a completion entry function to initiate readline’s filename
completion. Returns a list of matches.

Completion.complete_username(text)
Built-in username completion. May be called from a completion entry function to initiate readline’s username
completion. Returns a list of matches.

Completion.expand_tilde(text)
Built-in tilde expansion. May be called from anywhere to tilde-expand a filename.

Completion.display_match_list(substitution, matches, longest_match_length)
Built-in matches display. May be called from a custom display_matches_hook to perform the default action:
columnar display of matches.

Completion.redisplay(force=False)
Update the screen to reflect the current contents of line_buffer. If force is True, readline redisplays the
prompt area as well as the line.

2.3 Functions

rl.generator(func)
Generator function factory.

Takes a function returning a list of matches and returns an object implementing the generator protocol readline
requires. The function is called as function(text) and should return an iterable of matches for text.

rl.print_exc(func)
Decorator printing exceptions to stderr.

Useful when debugging completions and hooks, as exceptions occurring there are usually swallowed by the
in-between C code.

8 Chapter 2. Completion Support

CHAPTER

THREE

HISTORY SUPPORT

Readline history support.

3.1 History Interface

class rl.History

Interface to the readline history. Used to read and write history files and to manipulate history entries.

This class is not intended for instantiation beyond the one history object in this module. Typically, applications
will import the history object and use its properties and methods to work with readline history:

from rl import history

history.max_entries = 300
history.read_file(histfile)

History entries can be accessed like elements in a Python list. The item at index 0 is the oldest, the item at -1 the
most recent history entry.

History.auto

Controls whether readline automatically adds lines to the history. Defaults to True. Set to False if you want to
call append() yourself.

History.max_entries

The maximum number of history entries kept. Beyond this point the history list is truncated by removing the
oldest entry. A negative value means no limit. Defaults to -1.

History.max_file

The maximum size of a readline history file, in entries. Beyond this point the history file is truncated by removing
the oldest entries. A negative value means no limit. Defaults to -1.

History.append(line)
Append a line to the history.

History.__getitem__(index)
Return the history item at index.

History.__setitem__(index, line)
Replace the history item at index.

History.__delitem__(index)
Remove the history item at index.

9

rl Documentation, Release 3.1

History.__len__()

The current history length.

History.__iter__()

Iterate over history items (old to new).

History.__reversed__()

Reverse-iterate over history items (new to old).

History.clear()

Clear the history.

History.read_file(filename=None, raise_exc=False)
Load a readline history file. The default filename is ~/.history. If raise_exc is True, IOErrors will be allowed
to propagate.

History.write_file(filename=None, raise_exc=False)
Save a readline history file. The default filename is ~/.history. If raise_exc is True, IOErrors will be allowed
to propagate.

History.append_file(numitems, filename=None, raise_exc=False)
Append the last numitems history entries to a readline history file. The default filename is ~/.history. If
raise_exc is True, IOErrors will be allowed to propagate.

10 Chapter 3. History Support

CHAPTER

FOUR

READLINE BINDINGS

Importing this module enables command line editing using GNU Readline.

4.1 Readline Interface

The rl.readline module is an API-compatible replacement for the standard library’s readline bindings. The
standard library documentation applies, with the following exceptions:

1. get_completion_type() returns a string.

2. get_completion_append_character() defaults to the space character.

3. get_history_item() is zero-based.

4. redisplay() accepts an optional force argument.

Beyond that, rl.readline adds a plethora of new functionality which is typically accessed through the high-level
interfaces rl.completer, rl.completion, and rl.history. Functions not exposed through a high-level interface:

• readline_version() returns the readline library version as an integer.

• read_key() reads a character from the keyboard.

• stuff_char() stuffs a character into the input stream.

• complete_internal() executes the completer. Used in tests.

Note: It is possible to use rl.readline without the high-level APIs. To switch an existing application to rl, change
occurrences of import readline to from rl import readline.

Note: Applications must not use the standard library readline and rl.readline simultaneously. This is because
only one module can own the PyOS_ReadlineFunctionPointer.

11

https://docs.python.org/3/library/readline.html#module-readline

rl Documentation, Release 3.1

4.2 Functions

rl.readline.add_history(string)→ None
Add a line to the readline history.

rl.readline.append_history_file(nelements[, filename])→ None
Append the last nelements of the history to a readline history file. The default filename is ~/.history.

rl.readline.clear_history()→ None
Clear the current readline history.

rl.readline.complete_internal(what_to_do)→ int
Complete the word at or before the cursor position.

rl.readline.display_match_list(substitution, matches, longest_match_length)→ None
Display a list of matches in columnar format on readline’s output stream.

rl.readline.filename_completion_function(text, state)→ string
A built-in generator function for filename completion.

rl.readline.get_auto_history()→ bool
True if automatic history is enabled.

rl.readline.get_begidx()→ int
Get the beginning index of the readline tab-completion scope.

rl.readline.get_char_is_quoted_function()→ function
Get the function that determines whether or not a specific character in the line buffer is quoted.

rl.readline.get_completer()→ function
Get the current completion entry function.

rl.readline.get_completer_delims()→ string
Get the readline word delimiters for tab-completion.

rl.readline.get_completer_quote_characters()→ string
Get list of characters that may be used to quote a substring of the line.

rl.readline.get_completion_append_character()→ string
Get the character appended after the current completion.

rl.readline.get_completion_display_matches_hook()→ function
Get the current completion display function.

rl.readline.get_completion_found_quote()→ bool
When readline is completing quoted text, it sets this variable to True if the word being completed contains any
quoting character (including backslashes).

rl.readline.get_completion_query_items()→ int
Up to this many items will be displayed in response to a possible-completions call.

rl.readline.get_completion_quote_character()→ string
When readline is completing quoted text, it sets this variable to the quoting character found.

rl.readline.get_completion_suppress_append()→ bool
Do not append the completion_append_character after the current completion.

12 Chapter 4. Readline Bindings

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

rl Documentation, Release 3.1

rl.readline.get_completion_suppress_quote()→ bool
Do not append a matching quote character when performing completion on a quoted string.

rl.readline.get_completion_type()→ string
Get the type of completion being attempted.

rl.readline.get_completion_word_break_hook()→ function
A function to call when readline is deciding where to separate words for word completion.

rl.readline.get_current_history_length()→ int
Return the current (not the maximum) length of history.

rl.readline.get_directory_completion_hook()→ function
Get the current directory completion hook function.

rl.readline.get_directory_rewrite_hook()→ function
Get the current directory rewrite hook function.

rl.readline.get_endidx()→ int
Get the ending index of the readline tab-completion scope.

rl.readline.get_filename_completion_desired()→ bool
If True, treat the results of matches as filenames.

rl.readline.get_filename_dequoting_function()→ function
Get the current filename dequoting function.

rl.readline.get_filename_quote_characters()→ string
Get list of characters that cause a filename to be quoted by the completer.

rl.readline.get_filename_quoting_desired()→ bool
If True, filenames will be quoted.

rl.readline.get_filename_quoting_function()→ function
Get the current filename quoting function.

rl.readline.get_filename_rewrite_hook()→ function
Get the current filename rewrite hook function.

rl.readline.get_filename_stat_hook()→ function
Get the current filename stat hook function.

rl.readline.get_history_item(pos)→ string
Return the current contents of history item at pos.

rl.readline.get_history_iter()→ iterator
Return a forward iterator over the history (oldest to newest).

rl.readline.get_history_length()→ int
Return the maximum number of items written to the history file.

rl.readline.get_history_list()→ list
Return the entire history as a Python list. Element 0 of the list is the beginning of time.

rl.readline.get_history_max_entries()→ int
Return the current history size limit.

4.2. Functions 13

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

rl Documentation, Release 3.1

rl.readline.get_history_reverse_iter()→ iterator
Return a reverse iterator over the history (newest to oldest).

rl.readline.get_ignore_some_completions_function()→ function
This function may filter the results of filename completion.

rl.readline.get_inhibit_completion()→ bool
If True, completion is disabled.

rl.readline.get_line_buffer()→ string
Return the current contents of the line buffer.

rl.readline.get_pre_input_hook()→ function
Get the current pre_input_hook function.

rl.readline.get_rl_end()→ int
Return rl_end.

rl.readline.get_rl_point()→ int
Return rl_point.

rl.readline.get_special_prefixes()→ string
Characters that are word break characters, but should be left in text when it is passed to the completion function.

rl.readline.get_startup_hook()→ function
Get the current startup_hook function.

rl.readline.history_is_stifled()→ bool
True if a history size limit is set.

rl.readline.insert_text(string)→ None
Insert text into the command line.

rl.readline.parse_and_bind(string)→ None
Parse and execute single line of a readline init file.

rl.readline.read_history_file([filename])→ None
Load a readline history file. The default filename is ~/.history.

rl.readline.read_init_file([filename])→ None
Parse a readline initialization file. The default filename is the last filename used.

rl.readline.read_key()→ string
Read a key from readline’s input stream, typically the keyboard. Returns characters inserted with stuff_char()
before starting to read from the stream.

rl.readline.readline_version()→ int
Return the readline library version encoded in an integer. The format is 0xMMmm, where MM is the major and mm
the minor version number.

rl.readline.redisplay([force])→ None
Update the screen to reflect the current contents of the line buffer. If force is True, readline redisplays the
prompt area as well as the line.

rl.readline.remove_history_item(pos)→ None
Remove history item given by its position.

14 Chapter 4. Readline Bindings

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

rl Documentation, Release 3.1

rl.readline.replace_history_item(pos, string)→ None
Replace history item given by its position with string.

rl.readline.replace_line(string)→ None
Replace the line buffer contents with string.

rl.readline.set_auto_history(bool)→ None
Enable or disable automatic history.

rl.readline.set_begidx(int)→ None
Set the beginning index of the readline tab-completion scope.

rl.readline.set_char_is_quoted_function([function])→ None
Set or remove the function that determines whether or not a specific character in the line buffer is quoted. The
function is called as function(text, index) and should return True if the character at index is quoted, and
False otherwise.

rl.readline.set_completer([function])→ None
Set or remove the completion entry function. The function is called as function(text, state), for state
in 0, 1, 2, . . . , until it returns None. It should return the next possible completion starting with text.

rl.readline.set_completer_delims(string)→ None
Set the readline word delimiters for tab-completion.

rl.readline.set_completer_quote_characters(string)→ None
Set list of characters that may be used to quote a substring of the line.

rl.readline.set_completion_append_character(string)→ None
Set the character appended after the current completion. May only be called from within custom completers.

rl.readline.set_completion_display_matches_hook([function])→ None
Set or remove the completion display function. The function is called as function(substitution, matches,
longest_match_length) once each time matches need to be displayed.

rl.readline.set_completion_found_quote(bool)→ None
When readline is completing quoted text, it sets this variable to True if the word being completed contains any
quoting character (including backslashes).

rl.readline.set_completion_query_items(int)→ None
Up to this many items will be displayed in response to a possible-completions call.

rl.readline.set_completion_quote_character(string)→ None
When readline is completing quoted text, it sets this variable to the quoting character found.

rl.readline.set_completion_suppress_append(bool)→ None
Do not append the completion_append_character after the current completion. May only be called from within
custom completers.

rl.readline.set_completion_suppress_quote(bool)→ None
Do not append a matching quote character when performing completion on a quoted string. May only be called
from within custom completers.

rl.readline.set_completion_type(string)→ None
Set the type of completion being attempted.

4.2. Functions 15

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

rl Documentation, Release 3.1

rl.readline.set_completion_word_break_hook([function])→ None
A function to call when readline is deciding where to separate words for word completion. The function is called
as function(begidx, endidx) once for every completion, and should return a string of word break characters
for the current completion, or None to indicate no change.

rl.readline.set_directory_completion_hook([function])→ None
This function is allowed to modify the directory portion of filenames readline completes. The function is called
as function(dirname) and should return a new directory name or None to indicate no change. At the least,
the function must perform all necessary dequoting.

rl.readline.set_directory_rewrite_hook([function])→ None
This function is used to prepare the director name passed to opendir() during filename completion. The func-
tion is called as function(dirname) and should return a new directory name or None to indicate no change.
At the least, the function must perform all necessary dequoting.

rl.readline.set_endidx(int)→ None
Set the ending index of the readline tab-completion scope.

rl.readline.set_filename_completion_desired(bool)→ None
If True, treat the results of matches as filenames. May only be called from within custom completers.

rl.readline.set_filename_dequoting_function([function])→ None
Set or remove the filename dequoting function. The function is called as function(text, quote_char) and
should return a string representing a dequoted version of text, or None to indicate no change.

rl.readline.set_filename_quote_characters(string)→ None
Set list of characters that cause a filename to be quoted by the completer.

rl.readline.set_filename_quoting_desired(bool)→ None
If True, filenames will be quoted. May only be called from within custom completers.

rl.readline.set_filename_quoting_function([function])→ None
Set or remove the filename quoting function. The function is called as function(text, single_match,
quote_char) and should return a string representing a quoted version of text, or None to indicate no change.
The single_match argument is True if the completion has generated only one match.

rl.readline.set_filename_rewrite_hook([function])→ None
This function is called for every filename before it is compared against the completion word. The function is
called as function(filename) and should return a new filename or None to indicate no change.

rl.readline.set_filename_stat_hook([function])→ None
This function is used to prepare the filename passed to stat() during match display. The function is called as
function(filename) and should return a new filename name or None to indicate no change.

rl.readline.set_history_length(int)→ None
Set the maximum number of items written to the history file. A negative value inhibits history file truncation.

rl.readline.set_ignore_some_completions_function([function])→ None
This function may filter the results of filename completion. The function is called as function(substitution,
matches) and should return a filtered subset of matches or None to indicate no change.

rl.readline.set_inhibit_completion(bool)→ None
If True, completion is disabled and the completion character is inserted as any other character.

rl.readline.set_pre_input_hook([function])→ None
Set or remove the pre_input_hook function. The function is called with no arguments after the first prompt has
been printed and just before readline starts reading input characters.

16 Chapter 4. Readline Bindings

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

rl Documentation, Release 3.1

rl.readline.set_special_prefixes(string)→ None
Characters that are word break characters, but should be left in text when it is passed to the completion function.

rl.readline.set_startup_hook([function])→ None
Set or remove the startup_hook function. The function is called with no arguments just before readline prints the
first prompt.

rl.readline.stifle_history(max_entries)→ None
Limit the history size to max_entries entries.

rl.readline.stuff_char(string)→ bool
Insert a character into readline’s input stream. Returns True if the insert was successful.

rl.readline.tilde_expand(string)→ string
Return a new string which is the result of tilde expanding string.

rl.readline.unstifle_history()→ int
Remove the history size limit.

rl.readline.username_completion_function(text, state)→ string
A built-in generator function for username completion.

rl.readline.write_history_file([filename])→ None
Save a readline history file. The default filename is ~/.history.

4.2. Functions 17

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

rl Documentation, Release 3.1

18 Chapter 4. Readline Bindings

CHAPTER

FIVE

EXAMPLES

Example code.

5.1 Completion Entry Function

The completion entry function is called as function(text, state) for state in 0, 1, 2, . . . until it returns None.
It should return the next possible completion for text. You can run this example with python -m rl.examples.
raw_input.

Complete system commands

import os

from rl import completer

class CommandCompleter:
A completion entry function implementing readline's
generator protocol

def __call__(self, text, state):
if state == 0:

self.matches = list(self.complete_command(text))
try:

return self.matches[state]
except IndexError:

return None

def complete_command(self, text):
Return executables matching 'text'
for dir in os.environ.get('PATH').split(':'):

if os.path.isdir(dir):
for name in os.listdir(dir):

if name.startswith(text):
if os.access(os.path.join(dir, name), os.R_OK|os.X_OK):

yield name

def main():
Set the completion entry function

(continues on next page)

19

rl Documentation, Release 3.1

(continued from previous page)

completer.completer = CommandCompleter()

Enable TAB completion
completer.parse_and_bind('TAB: complete')

command = input('command> ')
print('You typed:', command)

if __name__ == '__main__':
main()

5.2 Generator Factory

The generator() factory provides a simple way to support this protocol. It is typically used as a decorator but can be
passed any callable to create a completion entry function. You can run this example with python -m rl.examples.
factory.

Complete system commands

import os

from rl import completer
from rl import generator
from rl import print_exc

@print_exc
@generator
def complete_command(text):

Return executables matching 'text'
for dir in os.environ.get('PATH').split(':'):

if os.path.isdir(dir):
for name in os.listdir(dir):

if name.startswith(text):
if os.access(os.path.join(dir, name), os.R_OK|os.X_OK):

yield name

def main():
Set the completion entry function
completer.completer = complete_command

Enable TAB completion
completer.parse_and_bind('TAB: complete')

command = input('command> ')
print('You typed:', command)

(continues on next page)

20 Chapter 5. Examples

rl Documentation, Release 3.1

(continued from previous page)

if __name__ == '__main__':
main()

5.3 Multiple Completions

The completion entry function is often a dispatcher, forwarding calls to more specific completion functions depending
on position and format of the completion word. You can run this example with python -m rl.examples.email.

Complete email addresses

from rl import completer
from rl import completion
from rl import generator
from rl import print_exc

from rl.utils import DEFAULT_DELIMS

def complete_hostname(text):
Search /etc/hosts for matching hostnames
with open('/etc/hosts', 'rt') as f:

lines = f.readlines()
for line in lines:

line = line.split()
if line and not line[0].startswith('#'):

for hostname in line[1:]:
if hostname.startswith(text[1:]):

yield '@' + hostname

@print_exc
@generator
def complete_email(text):

Dispatch to username or hostname completion
if text.startswith('@'):

return complete_hostname(text)
else:

completion.append_character = '@'
return completion.complete_username(text)

def main():
Configure word break characters
completer.word_break_characters = DEFAULT_DELIMS.replace('-', '')

Configure special prefixes
completer.special_prefixes = '@'

Set the completion entry function
completer.completer = complete_email

(continues on next page)

5.3. Multiple Completions 21

rl Documentation, Release 3.1

(continued from previous page)

Enable TAB completion
completer.parse_and_bind('TAB: complete')

email = input('email> ')
print('You typed:', email)

if __name__ == '__main__':
main()

5.4 Filename Completion

Filename completion is readline’s party trick. It is also the most complex feature, requiring various parts of readline to
be set up. You can run this example with python -m rl.examples.filename.

Complete filenames

import sys
import unicodedata

from rl import completer
from rl import completion
from rl import generator
from rl import print_exc

@print_exc
def char_is_quoted(text, index):

Return True if the character at index is quoted
return index > 0 and text[index-1] == '\\'

@print_exc
def quote_filename(text, single_match, quote_char):

Backslash-quote characters in text
if quote_char == "'":

pass
elif quote_char == '"':

for c in '\\"$`':
text = text.replace(c, '\\'+c)

else:
for c in completer.filename_quote_characters:

text = text.replace(c, '\\'+c)
return text

@print_exc
def dequote_filename(text, quote_char):

Backslash-dequote characters in text
(continues on next page)

22 Chapter 5. Examples

rl Documentation, Release 3.1

(continued from previous page)

if quote_char == "'":
pass

elif quote_char == '"':
for c in '\\"$`':

text = text.replace('\\'+c, c)
else:

for c in completer.filename_quote_characters:
text = text.replace('\\'+c, c)

return text

@print_exc
def rewrite_filename(text):

Normalize decomposed UTF-8 received from HFS Plus
return unicodedata.normalize('NFC', text)

@print_exc
@generator
def complete_filename(text):

matches = []
Complete usernames
if text.startswith('~') and '/' not in text:

matches = completion.complete_username(text)
Complete filenames
if not matches:

matches = completion.complete_filename(text)
return matches

def main():
Configure quote characters
completer.quote_characters = '\'"'
completer.word_break_characters = ' \t\n"\'><;|&=(:'
completer.filename_quote_characters = '\\ \t\n"\'@><;|&=()#$`?*[!:{'

Configure quoting functions
completer.char_is_quoted_function = char_is_quoted
completer.filename_quoting_function = quote_filename
completer.filename_dequoting_function = dequote_filename

Configure Unicode converter on Mac OS X
if sys.platform == "darwin":

completer.filename_rewrite_hook = rewrite_filename

Set the completion entry function
completer.completer = complete_filename

Enable TAB completion
completer.parse_and_bind('TAB: complete')

filename = input('file> ')

(continues on next page)

5.4. Filename Completion 23

rl Documentation, Release 3.1

(continued from previous page)

print('You typed:', filename)

if __name__ == '__main__':
main()

5.5 Display Matches Hook

The display_matches_hook is called whenever matches need to be displayed.

Python implementation of the default display_matches_hook

import sys

from rl import completer
from rl import completion
from rl import readline
from rl import print_exc

@print_exc
def display_matches_hook(substitution, matches, longest_match_length):

num_matches = len(matches)
if num_matches >= completer.query_items > 0:

sys.stdout.write('\nDisplay all %d possibilities? (y or n)' % num_matches)
sys.stdout.flush()
while True:

c = readline.read_key()
if c in 'yY\x20': # SPACEBAR

break
if c in 'nN\x7f': # RUBOUT

sys.stdout.write('\n')
completion.redisplay(force=True)
return

completion.display_match_list(substitution, matches, longest_match_length)
completion.redisplay(force=True)

24 Chapter 5. Examples

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

25

rl Documentation, Release 3.1

26 Chapter 6. Indices and Tables

PYTHON MODULE INDEX

r
rl, 3
rl._completion, 5
rl._history, 9
rl.examples, 19
rl.readline, 11

27

rl Documentation, Release 3.1

28 Python Module Index

INDEX

Symbols
__delitem__() (rl.History method), 9
__getitem__() (rl.History method), 9
__iter__() (rl.History method), 10
__len__() (rl.History method), 9
__reversed__() (rl.History method), 10
__setitem__() (rl.History method), 9

A
add_history() (in module rl.readline), 12
append() (rl.History method), 9
append_character (rl.Completion attribute), 8
append_file() (rl.History method), 10
append_history_file() (in module rl.readline), 12
auto (rl.History attribute), 9

B
begidx (rl.Completion attribute), 7

C
char_is_quoted_function (rl.Completer attribute), 6
clear() (rl.History method), 10
clear_history() (in module rl.readline), 12
complete_filename() (rl.Completion method), 8
complete_internal() (in module rl.readline), 12
complete_username() (rl.Completion method), 8
Completer (class in rl), 5
completer (rl.Completer attribute), 5
Completion (class in rl), 7
completion_type (rl.Completion attribute), 7

D
directory_completion_hook (rl.Completer attribute),

6
directory_rewrite_hook (rl.Completer attribute), 6
display_match_list() (in module rl.readline), 12
display_match_list() (rl.Completion method), 8
display_matches_hook (rl.Completer attribute), 6

E
endidx (rl.Completion attribute), 7

expand_tilde() (rl.Completion method), 8

F
filename_completion_desired (rl.Completion

attribute), 8
filename_completion_function() (in module

rl.readline), 12
filename_dequoting_function (rl.Completer at-

tribute), 6
filename_quote_characters (rl.Completer attribute),

5
filename_quoting_desired (rl.Completion attribute),

8
filename_quoting_function (rl.Completer attribute),

6
filename_rewrite_hook (rl.Completer attribute), 7
filename_stat_hook (rl.Completer attribute), 7
found_quote (rl.Completion attribute), 7

G
generator() (in module rl), 8
get_auto_history() (in module rl.readline), 12
get_begidx() (in module rl.readline), 12
get_char_is_quoted_function() (in module

rl.readline), 12
get_completer() (in module rl.readline), 12
get_completer_delims() (in module rl.readline), 12
get_completer_quote_characters() (in module

rl.readline), 12
get_completion_append_character() (in module

rl.readline), 12
get_completion_display_matches_hook() (in mod-

ule rl.readline), 12
get_completion_found_quote() (in module

rl.readline), 12
get_completion_query_items() (in module

rl.readline), 12
get_completion_quote_character() (in module

rl.readline), 12
get_completion_suppress_append() (in module

rl.readline), 12

29

rl Documentation, Release 3.1

get_completion_suppress_quote() (in module
rl.readline), 12

get_completion_type() (in module rl.readline), 13
get_completion_word_break_hook() (in module

rl.readline), 13
get_current_history_length() (in module

rl.readline), 13
get_directory_completion_hook() (in module

rl.readline), 13
get_directory_rewrite_hook() (in module

rl.readline), 13
get_endidx() (in module rl.readline), 13
get_filename_completion_desired() (in module

rl.readline), 13
get_filename_dequoting_function() (in module

rl.readline), 13
get_filename_quote_characters() (in module

rl.readline), 13
get_filename_quoting_desired() (in module

rl.readline), 13
get_filename_quoting_function() (in module

rl.readline), 13
get_filename_rewrite_hook() (in module

rl.readline), 13
get_filename_stat_hook() (in module rl.readline),

13
get_history_item() (in module rl.readline), 13
get_history_iter() (in module rl.readline), 13
get_history_length() (in module rl.readline), 13
get_history_list() (in module rl.readline), 13
get_history_max_entries() (in module rl.readline),

13
get_history_reverse_iter() (in module

rl.readline), 13
get_ignore_some_completions_function() (in

module rl.readline), 14
get_inhibit_completion() (in module rl.readline),

14
get_line_buffer() (in module rl.readline), 14
get_pre_input_hook() (in module rl.readline), 14
get_rl_end() (in module rl.readline), 14
get_rl_point() (in module rl.readline), 14
get_special_prefixes() (in module rl.readline), 14
get_startup_hook() (in module rl.readline), 14

H
History (class in rl), 9
history_is_stifled() (in module rl.readline), 14

I
ignore_some_completions_function (rl.Completer

attribute), 6
inhibit_completion (rl.Completer attribute), 5
insert_text() (in module rl.readline), 14

L
line_buffer (rl.Completion attribute), 7

M
max_entries (rl.History attribute), 9
max_file (rl.History attribute), 9
module

rl, 3
rl._completion, 5
rl._history, 9
rl.examples, 19
rl.readline, 11

P
parse_and_bind() (in module rl.readline), 14
parse_and_bind() (rl.Completer method), 6
pre_input_hook (rl.Completer attribute), 6
print_exc() (in module rl), 8

Q
query_items (rl.Completer attribute), 5
quote_character (rl.Completion attribute), 7
quote_characters (rl.Completer attribute), 5

R
read_file() (rl.History method), 10
read_history_file() (in module rl.readline), 14
read_init_file() (in module rl.readline), 14
read_init_file() (rl.Completer method), 6
read_key() (in module rl.readline), 14
readline_version() (in module rl.readline), 14
redisplay() (in module rl.readline), 14
redisplay() (rl.Completion method), 8
remove_history_item() (in module rl.readline), 14
replace_history_item() (in module rl.readline), 14
replace_line() (in module rl.readline), 15
rl

module, 3
rl._completion

module, 5
rl._history

module, 9
rl.examples

module, 19
rl.readline

module, 11

S
set_auto_history() (in module rl.readline), 15
set_begidx() (in module rl.readline), 15
set_char_is_quoted_function() (in module

rl.readline), 15
set_completer() (in module rl.readline), 15

30 Index

rl Documentation, Release 3.1

set_completer_delims() (in module rl.readline), 15
set_completer_quote_characters() (in module

rl.readline), 15
set_completion_append_character() (in module

rl.readline), 15
set_completion_display_matches_hook() (in mod-

ule rl.readline), 15
set_completion_found_quote() (in module

rl.readline), 15
set_completion_query_items() (in module

rl.readline), 15
set_completion_quote_character() (in module

rl.readline), 15
set_completion_suppress_append() (in module

rl.readline), 15
set_completion_suppress_quote() (in module

rl.readline), 15
set_completion_type() (in module rl.readline), 15
set_completion_word_break_hook() (in module

rl.readline), 15
set_directory_completion_hook() (in module

rl.readline), 16
set_directory_rewrite_hook() (in module

rl.readline), 16
set_endidx() (in module rl.readline), 16
set_filename_completion_desired() (in module

rl.readline), 16
set_filename_dequoting_function() (in module

rl.readline), 16
set_filename_quote_characters() (in module

rl.readline), 16
set_filename_quoting_desired() (in module

rl.readline), 16
set_filename_quoting_function() (in module

rl.readline), 16
set_filename_rewrite_hook() (in module

rl.readline), 16
set_filename_stat_hook() (in module rl.readline),

16
set_history_length() (in module rl.readline), 16
set_ignore_some_completions_function() (in

module rl.readline), 16
set_inhibit_completion() (in module rl.readline),

16
set_pre_input_hook() (in module rl.readline), 16
set_special_prefixes() (in module rl.readline), 16
set_startup_hook() (in module rl.readline), 17
special_prefixes (rl.Completer attribute), 5
startup_hook (rl.Completer attribute), 6
stifle_history() (in module rl.readline), 17
stuff_char() (in module rl.readline), 17
suppress_append (rl.Completion attribute), 8
suppress_quote (rl.Completion attribute), 7

T
tilde_expand() (in module rl.readline), 17

U
unstifle_history() (in module rl.readline), 17
username_completion_function() (in module

rl.readline), 17

W
word_break_characters (rl.Completer attribute), 5
word_break_hook (rl.Completer attribute), 6
write_file() (rl.History method), 10
write_history_file() (in module rl.readline), 17

Index 31

	Overview
	Package Contents
	Readline Completion
	Call Graph

	Readline History
	Upstream Documentation

	Completion Support
	Completer Interface
	Additional hooks for when the filesystem representation differs from the representation in the terminal

	Completion Interface
	Functions

	History Support
	History Interface

	Readline Bindings
	Readline Interface
	Functions

	Examples
	Completion Entry Function
	Generator Factory
	Multiple Completions
	Filename Completion
	Display Matches Hook

	Indices and Tables
	Python Module Index
	Index

